USN	06EC64
-----	--------

Sixth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Antennas and Propagation

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Define the term directivity and effective aperture related to antenna hence derive the relation for directivity D in terms of effective aperture A_e. (08 Marks)
 - b. Define the following with respect to antennal parameters

i) Effective height ii) Polarization.

(04 Marks)

- c. A lossless resonant $\lambda/2$ dipole antenna having an input impedance of 73Ω is to be connected to a transmission line having characteristic impedance of 50Ω . The pattern of the antenna is given by $u = u_0 \sin^3 \theta$. Find the overall gain of the antenna. (08 Marks)
- 2 a. State and explain power theorem and mention any two its application to point sources.
 (04 Marks)
 - b. Calculate the directivity of the source with the pattern $u = um \sin\theta \sin^3 \phi$. Using i) Exact method ii) Approximate method. Take $0 \le \theta \le \pi$ and $0 \le \phi \le \pi$. (08 Marks)
 - c. Show that maximum effective aperture of a half wave dipole antenna is $0.13\lambda^2$. (08 Marks)
- a. Explain the principle along with suitable examples of pattern multiplication. (06 Marks)
 - b. Obtain the field pattern for a linear uniform array of 6 isotropic point sources spaced λ/2 distance apart. The power is applied with equal amplitude and in phase. Find also HPBW and FNBW.
 - c. Derive an expression for radiation resistance (R_r) of a short dipole. (06 Marks)
- a. A half wave dipole in free space is radiating with a current of 1A (rms value) at the antenna terminals. Find the angle θ for maximum field strength and determine the field strength and power density at a point mile from the antenna at the corresponding angle. (06 Marks)
 - b. A thin linear dipole antenna is $\lambda/2$ long and its loss resistance is 1.2 Ω . Find the radiation resistance and efficiency. (04 Marks)
 - c. Write short notes on: i) Folded dipole antenna ii) Thin linear antenna (10 Marks)

PART - B

- 5 a. Explain Babinet's principle with suitable illustrations. (06 Marks)
 - b. Derive Far field expressions for small loop antenna.

or small loop antenna. (08 Marks)

- c. Explain microstrip antenna, with neat sketches. Mention its advantages. (06 Marks)
- 6 a. Explain the axial mode pattern and the phase velocity of wave propagation on Monofilar Helical antenna. (10 Marks)
 - b. Explain the operation of log periodic antenna.

(05 Marks)

c. Draw the constructional details of an embedded antenna.

(05 Marks)

- 7 a. Describe the factors affecting ground wave propagation.
 b. Explain clearly the phenomenon of Duct propagation.
 c. Derive an expression for wave tilt of surface wave.

 (06 Marks)
 (08 Marks)
- 8 a. For an ionospheric layers, derive the expression for conductivity and relative permittivity as a function of electron density and angular frequency. (08 Marks)
 - b. Write short notes on the following as related to ionospheric propagation:
 - i) Virtual height (h_r)
 - ii) Maximum usable frequency (f_{muf}).
 - iii) Critical frequency (fc).
 - iv) Skip distance (D_{skip}).

(12 Marks)
